8. Бесподобные отношения.



7 нуляля
Ужасно не люблю числа семь. Да и за что его любить?
Судите сами: чуть я поторопился, а мама сейчас же: "Нулик, семь раз примерь, один - отрежь!" Или стоит мне забросить шахматы и увлечься теннисом, а мама тут как тут: "Нулик, у тебя семь пятниц на одной неделе!" Так мне эта семёрка опротивела - сил нет!
Вот и сегодня - взглянул на календарь и ахнул: седьмое нуляля! Стало быть, жди какой-нибудь пакости. Но никакой пакости не вышло. Наоборот: день выдался очень весёлый.
Как вам, например, понравится такое: мыс Отношений? Да, да, именно так называется берег, вдоль которого идёт наш Фрегат, и мы с коком чуть со смеху не лопнули, услыхав это названьице. Добро бы ещё мыс Добрых отношений. Или, на худой конец, мыс Плохих отношений... Но просто отношений?! Смешно!
Пи, впрочем, смеялся, как выяснилось, не над названием мыса, а надо мной. По его словам, мыс Отношений ни к добрым ни к плохим отношениям отношения не имеет. Это, видите ли, мыс Отношений математических.
Уж этот Пи! Вечно он всё узнаёт первым.
Я, конечно, потребовал объяснений, но Пи сказал, что сегодня не в форме, из чего я понял, что он знает немногим больше меня. Так что пришлось обратиться к капитану Единице.
Капитан написал на листке блокнота вот что: 12 : 4 = 3.
Ну, мы сразу сообразили, что это пример на деление. Верно,- сказал капитан,- но тот же самый пример на деление можно рассматривать как пример на отношение чисел. Разделив 12 на 4, мы выясним, как эти числа относятся друг к другу. Ага! - обрадовался я.- Значит, у чисел всё-таки есть какие-то отношения!
- Разумеется,- подтвердил капитан,- но не добрые и плохие, а ЧИСЛОВЫЕ. И если у нас с тобой (тут капитан подмигнул мне), если у нас с тобой отношения могут меняться в зависимости от твоего поведения (сегодня -хорошие, завтра - плохие), то у чисел они не меняются никогда. Отношение двенадцати к четырём всегда равно трём, десяти к двум - пяти, тридцати шести к четырём - девяти...
- Значит, разные числа относятся друг к другу по-разному? - сообразил Пи.
- Не всегда,- возразил капитан.- В том-то и дело, что есть множество пар РАЗНЫХ чисел, которые относятся друг к другу совершенно ОДИНАКОВО. Как вы уже знаете, отношение двенадцати к четырём равно трём. Но ведь трём равно и отношение шести к двум, и восемнадцати к шести, и ста двадцати к сорока... Таких пар можно подобрать сколько угодно.
- Что верно, то верно,- сказал я.- У меня к числам тоже самые разные отношения. Вот, например, к семёрке... Увы,- вздохнул капитан,- у тебя, Нулик, ко всем числам отношение совершенно одинаково безразличное. Ведь отношение нуля и к пяти, и к десяти, и к ста, и к миллиону одно и то же: оно равно нулю! Ибо на сколько нуль ни дели. нуль так нулём и останется.
Интересно, на что он намекает?
Но капитан ни на что не намекал. Он снова вынул блокнот и написал: 12 : 4 = 6 : 2.
- Видите,- сказал он,- здесь написаны два отношения. Между ними я поставил знак равенства и получил ПРОПОРЦИЮ. А пропорция и есть равенство двух отношений. Числа, образующие пропорцию, соответственно пропорциональны.
- Что значит "соответственно"? - спросил я.
- А то, что делимое каждого из отношений (12 и 6) пропорциональны их делителям (4 и 2).
Ничего не скажешь, понятно. Но, по правде говоря, суховато. Во всяком случае, ничего интересного от мыса Отношений мы уже не ждали. И напрасно!
Фрегат подошёл к причалу, и все сошли на берег. Мы с Пи двинулись за капитаном и штурманом и попали -куда бы вы думали? В кино, вот куда. Капитан сказал, что хочет объяснить нам числовые отношения наглядно.
Фильм назывался... Эх, забыл! Ну да не в том дело. Главное, было очень весело.
Герой перепрыгивал с небоскрёба на небоскрёб, болтал ногами в воздухе, держась за стрелки башенных часов, а потом летел вниз и плюхался прямо на спину лошади.
Да, но при чём тут всё-таки математика?

Это я понял только потом, когда сеанс окончился и капитан повёл нас в кинобудку. Здесь он попросил механика показать нам киноплёнку.
- Как видите,-сказал он,- плёнка состоит из отдельных кадров-картинок. Картинки эти до того маленькие, что и не разглядишь. На экране мы их видим увеличенными во много-много раз. Но при этом числовые отношения всех размеров изображения ничуть не меняются. Они остаются теми же, что на плёнке. Вот, скажем, небоскрёб. Высота его на плёнке, допустим, 8 миллиметров, а ширина - 2. На экране высота небоскрёба равна восьмидесяти сантиметрам, а ширина - двадцати. Сам дом вырос в сто раз, но отношение его высоты к ширине не изменилось. Восемь так относится к двум, как восемьдесят к двадцати. Следовательно, все размеры дома соответственно пропорциональны размерам на плёнке. Иными словами, на экране мы видим точное подобие того, что изображено на киноленте. Вот почему изображения, все размеры которых соответственно пропорциональны, называются подобными. В математике же подобными могут быть любые геометрические фигуры. К примеру, подобны два треугольника, все стороны которых соответственно пропорциональны. Однако углы их при этом остаются неизменными, то есть конгруэнтными.
Вот так компот! Выходит, подобные треугольники конгруэнтны?
- Что за чепуха! - рассердился капитан, услыхав моё замечание.- Я же не о треугольниках толкую, а об углах. Сами же подобные треугольники вовсе не конгруэнтны и, уж конечно, не равновелики: ведь площади у них совершенно различны!
Тут мне пришло в голову, что раз есть фигуры подобные, значит, должны быть и какие-то бесподобные. Это я, конечно, так сострил, но капитан сказал, что бесподобные фигуры и впрямь найдутся, и повёл нас в комнату смеха.
Да, на мысе Отношений тоже есть комната смеха - прямо как в нашем Парке науки и отдыха. И здесь тоже, как водится, понаставлены всякие зеркала. В одном ты - кубышка, поперёк себя толще, в другом - долговязая жердь.
Я очень люблю смотреться в такие зеркала и каждый раз хохочу до упаду. Только прежде я смеялся просто так, а сегодня по научному, потому что понял, что меня смешит.
Оказывается, смеюсь я оттого, что вместо подобной себе фигуры вижу неподобную, непропорциональную, где привычное соотношение всех частей тела изменено, нарушено. Вот что значит побеседовать с капитаном Единицей!
Впрочем, любопытство моё на том не успокоилось, и я спросил, для чего всё-таки нужны все эти подобия и неподобия, пропорциональности и непропорциональности? Да затем, сказал капитан, что без правильных пропорций не создашь ничего путного.
Когда архитектор строит дом, он заботится не только о его прочности и удобстве, но и о том, чтобы на него приятно было смотреть. А приятно смотреть на здание с красивыми пропорциями. Конечно, найти такие пропорции нелегко. Для этого надо быть не только хорошим строителем, но и художником с тонко развитым чувством прекрасного.
Капитан сказал, что чувство это было в высшей степени свойственно древним грекам. Недаром же созданные ими статуи и храмы до сих пор остаются для нас недосягаемыми образцами гармонии. А всё оттого, что греки знали совершенные, идеальные соотношения между частями целого. Потому-то найденные ими пропорции называют классическими. А ещё их называют золотым сечением. И это такое сечение отрезка прямой, при котором меньшая его часть так относится к большей, как большая ко всему отрезку в целом.

- Но ведь о золотом сечении знали не только древние1 греки. Оно известно и сейчас,- вмешался Пи.- Почему же нынешние дома вовсе не похожи на древнегреческие?
- В самом деле, почему? - подбоченился я.
- Наверное потому, что всё хорошо в своё время,-сказал Единица.- Мы можем любоваться древнегреческими зданиями, но копировать их сейчас было бы глупо. Ведь древние греки жили совсем не так, как мы. У них были иные потребности. И всё же напрасно вы думаете, что классические пропорции в наше время забыты. Они сплошь да рядом используются в современных постройках. Но рядом с прежними возникают новые вкусы, новые соотношения. Потому что всё на свете меняется. В том числе и понятие о прекрасном.
- Нет,- заявил я,- кое-что всё-таки остаётся неизменным. Это отношения чисел. Шесть, делённое на два, как ни верти, всегда равно трём.
- Это уж точно,- подтвердил капитан.- Так же точно, как то, что геометрия стоит на трёх китах.
- Ну да? - удивился я.-Первый раз слышу. В древности думали, что на трёх китах Земля держится, но мама говорит, что это было давно и неправда.
- Земля Землёй,- спокойно сказал Единица,- а геометрия геометрией, даром что родилась она из землемерия...Геометрия - наука о воображаемом. И киты, на которых она держится, тоже не всамделишные, что, впрочем, не делает их менее надёжными. Я говорю о трёх самых главных, самых опорных понятиях геометрии, которые по математическому обычаю можно бы обозначить буквами: К, Р, П. Это Конгруэнтность, Равновеликость и Подобие.
- А ведь правда,- сказал Пи после некоторого раздумья.- С самого начала плавания по геометрическим морям и океанам у нас только и разговору что о конгруэнтности да равновеликости. А сегодня вот и о подобии.
- Наконец-то я понял,- выпалил я,- почему вы повторяете ваше любимое "кит знает что!". Вы имеете в виду кита геометрического. Только вот какого из трёх?
- Всех разом,- засмеялся он и повёл нас на Фрегат.
Предыдущая глава Оглавление Следующая глава